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Abstract 

Background: Pronunciation remains a persistent challenge in 

second language acquisition, often linked to high cognitive 

load during perception and production. The emergence of 

Adaptive Large Language Models (LLMs) offers new 

opportunities for individualized pronunciation training. 

Aim: This study aims to evaluate whether adaptive Large 

Language Model (LLM)–based feedback, grounded in 

Cognitive Load Theory, can improve pronunciation accuracy 

and efficiency while reducing learners’ cognitive load 

compared to conventional audio-lingual methods. 

Method: This study integrates LLM-driven adaptive feedback 

with principles from Cognitive Load Theory (CLT). A quasi-

experimental design was implemented with two groups: one 

trained with adaptive LLM-based pronunciation support and 

the other with conventional audio-lingual methods. 

Pronunciation accuracy, reaction time, and cognitive load (via 

NASA-TLX and pupillometry) were measured across 8 weeks. 

Results: Findings indicate that adaptive LLM training 

significantly improved pronunciation accuracy (+15%) and 

reduced extraneous cognitive load compared to the control 

group. Reaction times also decreased, suggesting more 

efficient speech processing. 

Conclusion: Adaptive LLMs can serve as effective 

pronunciation tutors, balancing instructional input with 

learners’ cognitive capacity. This integration contributes both 

theoretically by linking AI-based learning with cognitive load 

research and practically, by offering scalable, adaptive, and 

low-load pronunciation training tools. 

 

I. Introduction 

Pronunciation is a persistent challenge in second language acquisition (SLA), often 

regarded as one of the most difficult skills to master compared to grammar or vocabulary 

(Derwing & Munro, 2015; Levis, 2018). Learners frequently struggle to achieve intelligible 

pronunciation despite extensive exposure and practice, which can negatively affect 

communicative competence and confidence (Thomson & Derwing, 2016a). Research has 

shown that pronunciation difficulties are not merely phonetic but are strongly associated with 

cognitive load during speech perception and production (Baralt & Gómez, 2017; Skehan, 

2014a).  
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Traditional methods such as audio-lingual drills and computer-assisted pronunciation 

training (CAPT) provide valuable exposure but lack adaptability to learners’ individual needs 

(Chun, 2012a; Pennington & Rogerson-Revell, 2019). Existing technologies like automatic 

speech recognition have advanced accuracy, but they rarely address the cognitive demands 

learners face during real-time speech processing (Hincks, 2020; Saito & Plonsky, 2019). 

Furthermore, most CAPT systems provide static feedback, failing to dynamically scaffold 

learners in accordance with their cognitive capacity (Levis & Sonsaat, 2017; Lord, 2018).  

The rise of Large Language Models (LLMs) such as GPT-4, PaLM, and LLaMA 

introduces possibilities for adaptive, context-sensitive pronunciation training (Brown et al., 

2020; Chowdhery et al., 2022). Unlike rule-based systems, LLMs can provide personalized 

feedback, generate phonetic scaffolds, and simulate conversational contexts, offering learners 

a more naturalistic training environment (Huang et al., 2023; Ruan et al., 2022). Importantly, 

adaptive LLMs can adjust task complexity based on real-time learner performance, aligning 

with individualized learning principles in SLA (Ellis & Shintani, 2014; Godwin-Jones, 2022).  

Cognitive Load Theory (CLT) differentiates between intrinsic, extraneous, and 

germane cognitive loads, and provides a theoretical framework to evaluate instructional 

design (Kirschner et al., 2011; Paas & Van Merriënboer, 1994a; Sweller, 2010). Pronunciation 

training often generates high extraneous load due to complex phonetic processing and 

unfamiliar auditory cues (Baralt et al., 2016; Mayer, 2014; Plass & Moreno, 2010). Studies 

emphasize that reducing extraneous load while enhancing germane load supports more 

efficient language learning (De Jong, 2010; Kalyuga, 2011). Adaptive LLMs, therefore, have 

the potential to provide pronunciation feedback that is cognitively efficient, minimizing 

overload while maximizing learning outcomes. 

Despite rapid developments in NLP and AI-assisted learning, few studies explicitly 

examine how adaptive LLMs can be integrated into pronunciation training with attention to 

cognitive load (Chun, 2012a; Hockly, 2019; Zhang & Zou, 2021). Existing research often 

focuses on accuracy or learner perceptions without measuring cognitive effects such as 

working memory or mental effort (Kormos, 2014; Robinson, 2011; Skehan, 2014b). The 

present study addresses this gap by investigating the effectiveness of adaptive LLMs in 

pronunciation training through the lens of CLT. Specifically, it aims to evaluate whether 

adaptive LLM-based feedback improves pronunciation accuracy while reducing extraneous 

cognitive load, thus contributing to both theoretical advancement and practical pedagogical 

design (Mishra & Koehler, 2006; Warschauer & Liaw, 2011). 

 

II. Literature Review 

Pronunciation has been extensively studied in SLA, with findings consistently 

showing that intelligible pronunciation is central to communicative competence (Derwing & 

Munro, 2015; Levis, 2018). Despite pedagogical attention, pronunciation remains 

underemphasized in curricula, often overshadowed by grammar and vocabulary (Foote & 

Trofimovich, 2018b; Thomson & Derwing, 2016b). Researchers highlight that pronunciation 

difficulties are strongly linked to learners’ cognitive constraints, including attentional limits 

and working memory (Baralt & Gómez, 2017; Skehan, 2014b).  

CAPT systems emerged to provide learners with individualized practice through 

automatic speech recognition and visual feedback (Chun, 2012b; Hincks, 2020; Pennington 

& Rogerson-Revell, 2019). Although effective in improving accuracy, most CAPT platforms 

lack adaptivity and fail to reduce extraneous cognitive load (Levis & Sonsaat, 2017; Lord, 

2018). Moreover, CAPT feedback tends to be static, which limits its alignment with learners’ 

dynamic needs (Z. Li & Hegelheimer, 2013; Saito & Plonsky, 2019). 

The rise of LLMs (GPT-4, PaLM, LLaMA) presents opportunities for personalized 

feedback in pronunciation learning (Brown et al., 2020; Chowdhery et al., 2022). Unlike 
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static CAPT systems, LLMs can dynamically adjust input complexity and scaffold 

phonological practice in context (Huang et al., 2023; Ruan et al., 2022). Studies also suggest 

that adaptive AI fosters motivation and learner autonomy, critical for sustained pronunciation 

development (Ellis & Shintani, 2014; Godwin-Jones, 2022). 

Cognitive Load Theory (CLT) has been widely applied in SLA to understand how 

instructional design influences learning efficiency (Kirschner et al., 2011; Paas & Van 

Merriënboer, 1994b; Sweller, 2010). Pronunciation tasks often impose heavy extraneous load 

due to phonetic unfamiliarity and auditory complexity (Baralt et al., 2016; Mayer, 2014; Plass 

& Moreno, 2010). Empirical studies reveal that reducing extraneous load while enhancing 

germane processing promotes automatization of L2 speech (De Jong, 2010; Kalyuga, 2011). 

However, research specifically combining CLT with pronunciation training remains scarce. 

While LLMs are increasingly applied in writing and translation tasks, their role in 

pronunciation training has not been systematically explored (Chun, 2012b; Hockly, 2019; 

Zhang & Zou, 2021). Likewise, very few studies have explicitly measured cognitive load in 

AI-based pronunciation training (Kormos, 2014; Robinson, 2011; Skehan, 2014a). This 

literature gap highlights the novelty of investigating adaptive LLMs for pronunciation 

through a CLT framework, which could enrich both SLA pedagogy and educational 

technology research (Mishra & Koehler, 2006; Warschauer & Liaw, 2011). 

 

 

III. Method 

Research Design 

This study employed a mixed-methods approach with a predominant quantitative quasi-

experimental design complemented by qualitative insights. The quantitative phase compared 

two groups: an experimental group trained with adaptive LLM-based pronunciation feedback 

and a control group trained with conventional audio-lingual drills. Pre- and post-tests were 

conducted to measure pronunciation accuracy, speech fluency, and cognitive load. The 

qualitative phase involved semi-structured interviews to capture learner perceptions of 

motivation, usability, and cultural appropriateness. This design was selected to provide both 

empirical evidence of effectiveness and contextual understanding of learner experiences. 

Participants 

A total of 120 undergraduate EFL students from a public university were recruited. 

Participants were randomly assigned into two groups: experimental (n=60) and control 

(n=60). All participants had intermediate proficiency (B1–B2 CEFR) and no prior experience 

with AI-based pronunciation tools. 

Instruments  

• Pronunciation Accuracy Test: A set of 50 sentences with target phonemes, rated by 

trained linguists on a 5-point intelligibility scale. 

• Speech Fluency Test: Timed reading and spontaneous speech tasks, measured in 

speech rate and pause frequency. 

• Cognitive Load Measurement: NASA-TLX questionnaire and pupillometry via eye-

tracking. 

• LLM Platform: A customized adaptive LLM model providing real-time feedback on 

phoneme accuracy, prosody, and intonation. 

Data Collection  

The study lasted eight weeks. In week 1, all participants completed pre-tests on pronunciation 

and cognitive load. Weeks 2–7 involved training sessions (3 times per week, 30 minutes 

each). The experimental group used the adaptive LLM system, while the control group 

practiced with audio-lingual methods. In week 8, participants completed post-tests and the 
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NASA-TLX survey. Semi-structured interviews were conducted with 15 randomly selected 

participants from each group. 

Data Analysis 

Quantitative data were analyzed using paired-samples t-tests and ANCOVA to compare pre- 

and post-test scores across groups. Effect sizes (Cohen’s d) were calculated to assess practical 

significance. Pupillometry data were analyzed with repeated-measures ANOVA. Qualitative 

interview data were coded thematically using NVivo, focusing on learner perceptions of 

motivation, feedback quality, and cognitive effort. 

 
 

 

IV. Result and Discussion 

Result 

The quantitative analysis revealed significant improvements in the experimental group 

compared to the control group. As presented in Table 1, grammar accuracy scores increased 

by an average of 7.5 points and fluency scores rose by 1.6 points. ANCOVA confirmed that 

these differences were statistically significant (p < .01). 

Table 1. Pronunciation Outcomes Comparison 

Group N Accuracy Score (0–100) SD Fluency (0–10) SD 

Control (Generic NLP) 60 77.8 5.1 6.5 0.8 

Experimental (LLM-based) 60 85.3 4.6 8.1 0.7 
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Effect size analysis confirmed that the observed improvements were not only statistically 

significant but also practically meaningful. Cohen’s d indicated a large effect for accuracy (d 

= 0.89) and a medium-to-large effect for fluency (d = 0.74). 

Table 2. Effect Size (Cohen’s d) 

Measure Cohen’s d Interpretation 

Accuracy 0.89 Large Effect 

Fluency 0.74 Medium-to-Large 

NASA-TLX results revealed that the experimental group reported significantly lower levels 

of mental demand, effort, and frustration compared to the control group. These findings were 

corroborated by pupillometry data, which showed reduced average pupil dilation during 

tasks, suggesting decreased extraneous cognitive load. 

Table 3. Cognitive Load Comparison (NASA-TLX) 

Group N Mental Demand (0–100) Effort (0–100) Frustration (0–100) 

Control (Generic NLP) 60 71.2 68.4 64.7 

Experimental (LLM-based) 60 55.6 52.1 48.3 

Figure 1. Cognitive Load Reduction (NASA-TLX) 

 
Survey responses further supported these findings. A majority of learners reported that the 

adaptive LLM feedback increased confidence and reduced anxiety in pronunciation practice. 

Table 4. Learners’ Perceptions 

Statement % Agree % Disagree 

The system reduced my anxiety in speaking 89% 11% 

I feel more confident in pronunciation 92% 8% 

The feedback was clear and useful 90% 10% 

Discussion 

The findings revealed that learners trained with adaptive LLM feedback significantly 

improved their pronunciation accuracy and fluency compared to those using generic NLP 

tools. This result supports previous research emphasizing the centrality of intelligible 

pronunciation in communicative competence and the effectiveness of technology-assisted 

training (Derwing & Munro, 2015; Levis, 2018). The large effect sizes indicate that LLM-

based feedback not only corrected errors but also facilitated automatization of speech 



 

26 

 

patterns, consistent with evidence that adaptive, individualized feedback accelerates L2 

phonological learning (Foote & Trofimovich, 2018a). 

The reduction in cognitive load for the experimental group provides strong evidence 

for the pedagogical value of adaptive scaffolding. Lower NASA-TLX scores and 

pupillometry measures demonstrate that learners experienced less mental demand and 

frustration, aligning with Cognitive Load Theory (Kalyuga, 2011; Sweller, 2010). By 

minimizing extraneous cognitive load, the LLM system enabled learners to allocate more 

resources to essential tasks such as phoneme discrimination and prosodic control (De Jong, 

2010; Plass & Moreno, 2010). These results confirm that adaptive AI can function as a 

cognitive regulator, supporting more efficient pronunciation practice. 

Survey data showed that learners perceived the adaptive LLM system as reducing 

anxiety and increasing confidence in pronunciation tasks. These perceptions are consistent 

with studies highlighting the importance of affective factors in language learning (MacIntyre 

& Gregersen, 2012; Warschauer, 2013; Zhang & Zou, 2021). By lowering anxiety and 

providing supportive feedback, the system reinforced learner willingness to communicate, an 

essential factor in pronunciation development. 

This study contributes theoretically by integrating Cognitive Load Theory with 

pronunciation training in AI-mediated environments. It highlights the dual role of adaptive 

LLMs: facilitating phonological accuracy while simultaneously regulating learner cognitive 

load. Pedagogically, the findings suggest that AI tools should not only focus on linguistic 

correction but also be designed to manage learner workload and affective states, ensuring 

more holistic language learning support (Ellis & Shintani, 2014).  

Despite the promising outcomes, limitations must be acknowledged. The study was 

limited to intermediate-level learners and a relatively short intervention period (eight weeks). 

Future research should extend the duration, explore effects across proficiency levels, and 

examine longitudinal cognitive load dynamics (Creswell, 2018; Ortega, 2014). Comparative 

studies on different adaptive AI architectures may also clarify which system features most 

effectively reduce extraneous load while enhancing pronunciation performance. 

This study makes a unique contribution by bridging adaptive large language models 

with pronunciation training through the lens of cognitive load. While previous research has 

examined either AI-assisted pronunciation (Derwing & Munro, 2015; Foote & Trofimovich, 

2018b) or cognitive load management in learning (Plass & Moreno, 2010; Sweller, 2010), 

few studies have integrated these perspectives. The novelty lies in showing that adaptive AI 

feedback not only improves phonological accuracy but also actively regulates learner 

workload, offering a dual pathway to efficiency and confidence in pronunciation learning. 

This dual perspective opens new directions for designing AI-based language learning tools 

that are both linguistically accurate and cognitively sustainable. 

 

V. Conclusion 

This study investigated the effectiveness of adaptive large language models (LLMs) in 

pronunciation training from a cognitive load perspective. The findings demonstrated that 

learners receiving adaptive LLM feedback achieved significant improvements in 

pronunciation accuracy and fluency compared to those using generic NLP tools. Importantly, 

the intervention reduced cognitive load, as evidenced by lower NASA-TLX scores and 

pupillometry data, confirming that adaptive AI can act as a cognitive regulator in language 

learning. Learners also reported reduced anxiety and higher confidence, suggesting that the 

system provided both linguistic and affective support. 

The contribution of this study lies in integrating Cognitive Load Theory with AI-mediated 

pronunciation training, showing that adaptive feedback not only enhances phonological 

accuracy but also optimizes cognitive efficiency. Pedagogically, the results highlight the 
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importance of designing AI-based learning tools that combine linguistic accuracy with 

cognitive sustainability. Future research should examine long-term effects, extend to different 

proficiency levels, and compare various adaptive AI architectures to further validate these 

findings. 
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